Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Dairy Sci ; 107(2): 829-839, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37709027

RESUMO

The objective of this pilot study was to generate data to support the development of an experimental model of hindgut acidosis to further understand its systemic consequences independently of rumen acidosis. Four ruminally fistulated multiparous Holstein cows (213 ± 11 d in milk) were subjected to 2 consecutive experimental periods (P1 and P2), separated by a 3-d washout. Experimental periods were 96 h long from the baseline to the final measurements but expanded over 5 calendar days (d 0-4). Abomasal infusions of saline and corn starch (2.8 kg/d) were performed for the first 72 h (d 0-3) of P1 and P2, respectively. Final measurements were performed 24 h after the end of the infusions (d 4). Each cow was used as its own control by comparing P2 to P1. Postruminal-intestinal permeability was assessed by Cr appearance in blood after a pulse dose administration of Cr-EDTA into the abomasum on d 2 (48 h after infusion initiation) of each period. Starch infusion during P2 was associated with a milk protein yield increase (3.3%) and a decrease in milk urea nitrogen (11%). Fecal dry matter increased (8.8%), and starch content tended to increase (∼2 fold) during P2. There was a period-by-day interaction for fecal pH as it decreased during starch infusion (1.3 pH points) but remained constant during P1. Although fecal lactate was not detectable during P1, it consistently increased during starch infusion. Fecal alkaline phosphatase activity also increased (∼17 fold) in association with starch infusion. Two hours after Cr-EDTA administration, blood Cr concentration was higher during starch infusion, resulting in a tendency for a treatment-by-hour interaction. Furthermore, blood d-lactate increased (∼2.5 fold), serum Cu decreased (18%), and blood urea nitrogen, cholesterol, and Ca tended to decrease (9.4%, 1.2%, and 2.4%, respectively), relative to P1. The current results suggest that hindgut acidosis was successfully induced by postruminal starch infusion, leading to gut damage and increased intestinal permeability. However, indications of systemic inflammation were not observed. The herein described preliminary results will require confirmation in a properly powered study.


Assuntos
Acidose , Doenças dos Bovinos , Feminino , Bovinos , Animais , Projetos Piloto , Digestão , Ácido Edético/metabolismo , Lactação , Amido/metabolismo , Acidose/veterinária , Acidose/metabolismo , Dieta , Rúmen/metabolismo , Doenças dos Bovinos/metabolismo
2.
J Dairy Sci ; 107(1): 342-358, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37690727

RESUMO

A 305-d lactation followed by a 60-d dry period has traditionally been considered economically optimal, yet dairy cows in modern intensive dairy systems are frequently dried off while still producing significant quantities of milk. Managing cows for an extended lactation has reported production, welfare, and economic benefits, but not all cows are suitable for an extended lactation. Implementation of an extended lactation strategy on-farm could benefit from use of a decision support system, based on a mathematical lactation model, that can identify suitable cows during early lactation that have a high likelihood of producing above a target milk yield (MY) at 305 d in milk (DIM). Therefore, our objectives were (1) to compare the suitability of 3 commonly used lactation models for modeling extended lactations (Dijkstra, Wood, and Wilmink) in primiparous and multiparous cows under a variety of lactation lengths, and (2) to determine the amount of early-lactation daily MY data needed to accurately forecast MY at d 305 by using the most suitable model and determine whether this is sufficient for identifying cows suitable for an extended lactation before the end of a typical voluntary waiting period (50-90 d). Daily MY data from 467 individual Holstein-Friesian lactations (DIM >305 d; 379 ± 65-d lactation length [mean ± SD]) were fitted by the 3 lactation models using a nonlinear regression procedure. The parameter estimates of these models, lactation characteristics (peak yield, time to peak yield, and persistency), and goodness-of-fit were compared between parity and different lactation lengths. The models had similar performance, and differences between parity groups were consistent with previous literature. Then, data from only the first i DIM for each individual lactation, where i was incremented by 30 d from 30 to 150 DIM and by 50 d from 150 to 300 DIM, were fitted by each model to forecast MY at d 305. The Dijkstra model was selected for further analysis, as it had superior goodness-of-fit statistics for i= 30 and 60. The data set was fit twice by the Dijkstra model, with parameter bounds either unconstrained or constrained. The quality of predictions of MY at d 305 improved with increasing data availability for both models and assisting the model fitting procedure with more biologically relevant constraints on parameters improved the predictions, but neither was reliable enough for practical use on-farm due to the high uncertainty of forecasted predictions. Using 90 d of data, the constrained model correctly classified 66% of lactations as being above or below a target MY at d 305 of 25 kg/d, with a probability threshold of 0.95. The proportion of correct classifications became smaller at lower targets of MY at d 305 and became greater when using more lactation days. Overall, further work is required to develop a model that can forecast late-lactation MY with sufficient accuracy for practical use. We envisage that a hybridized machine learning and mechanistic model that incorporates additional historical and genetic information with early-lactation MY could produce meaningful lactation curve forecasts.


Assuntos
Lactação , Leite , Gravidez , Feminino , Bovinos , Animais , Leite/metabolismo , Paridade , Colostro , Probabilidade
3.
Transl Anim Sci ; 7(1): txad126, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38023423

RESUMO

Streptococcus suis (S. suis) is an endemic zoonotic pathogen still lacking adequate prevention in pigs. The present case study looked back to the occurrence and consequences of S. suis outbreaks in our swine research facilities in search of new metabolic and physiological insight. From a series of outbreaks, a dataset was created including 56 pigs sampled during disease detection based on clinical signs. Pigs suspected with S. suis infection were defined as diseased (n = 28) and included pigs defined as neurologically diseased (n = 20) when severe neurological signs (central nervous system dysfunctions, i.e., opisthotonos, ataxia, and generalized tremor) were observed. Another set of 28 pigs included respective pen mates from each case and were defined as control. Representative deaths were confirmed to be caused by S. suis. Tonsillar swabs were collected and analyzed by quantitative polymerase chain reaction (qPCR) for total bacteria, total S. suis, and S. suis serotypes (SS) 2 (and/or 1/2) and 9. Blood and sera were analyzed to quantify blood gases, minerals, and S. suis reactive immunoglobulins against current isolates. Data collected included litter sibling associations, birth and weaning body weight (BW), and average daily gain (ADG) 7 d after the disease detection. In general, the disease increased pH, sO2 and the incidence of alkalosis, but reduced pCO2, glucose, Ca, P, Mg, K, and Na in blood/serum compared to control. The SS2 (and/or SS1/2) prevalence was significantly (P < 0.05) increased in neurologically diseased pigs and its relative abundance tended (P < 0.10) to increase in tonsils. In contrast, the relative abundance of total S. suis was lower (P > 0.05) in diseased pigs than control pigs. Levels of S. suis reactive IgG2 were lower, but IgM were higher (P < 0.03) in neurologically affected pigs compared to control. Furthermore, there was an increased proportion of sibling pigs that were diseased compared to control. In conclusion, our results evidence that naturally affected pigs were associated to average performing pigs without any predisease trait to highlight but a sow/litter effect. Besides, neurologically affected pigs had increased S. suis (SS2 and/or 1/2) prevalence and relative abundance, a respiratory alkalosis profile, and mineral loss.

4.
J Anim Sci ; 1012023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36799118

RESUMO

The objective of this study was to compare the effects of post-ruminal provision of Ca-butyrate (CaB) when delivered via abomasal dosing, and Ca-gluconate (CaG) when provided ruminally using a rumen protected form or using an unprotected form via abomasal dosing on short-chain fatty acid (SCFA) concentration throughout the GIT, nutrient digestibility, GIT barrier function, ruminal SCFA absorption, ruminal morphometrics, intestinal brush border enzyme activity, and blood parameters for beef heifers. Thirty-two beef heifers fitted with ruminal cannulas were used in a randomized complete block design and assigned to one of four treatments: 1) negative control (ruminal infusion of double-distilled water; CON); 2) abomasal infusion of CaB (AB; 0.0029% of BW); 3) abomasal infusion of CaG (AG; 0.0077% of BW); and 4) ruminal infusion of a hydrogenated fat-embedded CaG (RG; 0.0192% of BW) to provide ruminal protection. Excluding CON, treatments were designed to deliver the same amount of butyrate in the small intestine. Heifers were housed in individual pens and DMI was limited to 95% of voluntary intake to minimize a potential confounding effect of DMI on treatment responses. Total GIT barrier function was assessed on day 17 and SCFA disappearance was evaluated on day 21 using the temporarily isolated and washed reticulo-rumen technique. On day 28, heifers were slaughtered, and ruminal and colonic digesta were collected to assess SCFA concentration. Additionally, ruminal, jejunal, and colonic tissues were collected to assess SCFA fluxes and regional barrier function ex vivo using the Ussing chamber technique. For colonic digesta, both AB and CaG treatments reduced the proportion of acetate (P < 0.05) and increased the proportion on propionate (P < 0.05) compared to CON. Relative to CON, AB but not CaG treatments increased in vivo ruminal disappearance of total SCFA (P = 0.01), acetate (P = 0.03), propionate (P = 0.01), and butyrate (P > 0.01). Treatments did not affect (P ≥ 0.10) acetate and butyrate fluxes in the ruminal and colonic tissues when measured ex vivo; however, when compared with CON, AB tended to decrease (P = 0.09) mannitol flux across ruminal tissue. In addition, mannitol flux was affected (P < 0.01) by region, with greater mannitol flux across the jejunum than rumen and colon. We conclude that while both abomasal infusion of CaB and CaG affect the molar proportion of acetate and propionate in the colon, only abomasal CaB stimulated ruminal SCFA absorption for growing beef heifers.


Butyrate, a short-chain fatty acid (SCFA), has received attention due to its ability to promote gastrointestinal (GIT) health and development. However, butyrate in its free form presents a strong odor, limiting its use in diet formulation. Supplementation of butyrate precursors, such as gluconate, have been studied to enhance butyrate production in the GIT. This study evaluated the effects of post-ruminal infusion of Ca-butyrate (AB; 0.0029% of BW) and Ca-gluconate (AG; 0.0077% of BW) and ruminal infusion of a hydrogenated fat-embedded Ca-gluconate (RG; 0.0192% of BW) relative to control (CON; ruminal infusion of double-distilled water). Thirty-two beef heifers fitted with ruminal cannulas were fed for 28 d and GIT barrier function and ruminal SCFA absorption were assessed. At slaughter, the rumen, jejunum, and colon tissues were collected and barrier function and SCFA fluxes were assessed ex vivo. Relative to CON, AB but not AG and RG increased in vivo ruminal SCFA absorption and tended to increase ex vivo barrier function. Thus, the data presented in this study shows that butyrate and gluconate do not function through the same mode of action in the GIT of beef heifers.


Assuntos
Butiratos , Dieta , Bovinos , Animais , Feminino , Butiratos/farmacologia , Butiratos/metabolismo , Dieta/veterinária , Propionatos/metabolismo , Microvilosidades , Ácidos Graxos Voláteis/metabolismo , Gluconatos/metabolismo , Absorção Intestinal , Rúmen/metabolismo , Ração Animal/análise , Fermentação , Digestão/fisiologia
5.
J Nutr ; 153(4): 1008-1018, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36813237

RESUMO

BACKGROUND: Trace metals are supplemented in cattle to prevent nutrient deficiencies. Levels supplemented to mitigate worst-case basal supply and availability scenarios can, however, result in trace metal intakes far above the nutritional requirements of dairy cows with high feed intakes. OBJECTIVES: We evaluated Zn, Mn, and Cu balance in dairy cows from late lactation through the subsequent mid-lactation, a period of 24 wk characterized by large changes in dry matter intake. METHODS: Twelve Holstein dairy cows were housed in a tie-stall from 10 wk before to 16 wk after parturition and fed 1 unique lactation diet when lactating and a dry cow diet otherwise. After 2 wk of adaptation to the facility and diet, Zn, Mn, and Cu balances were determined at weekly intervals, by calculating the difference between total intakes and complete fecal, urinary, and milk outputs, with the latter 3 fluxes quantified over a 48-h period. Repeated measure mixed models were used to evaluate the effects on trace mineral balances over time. RESULTS: The Mn and Cu balances of cows were not significantly different from 0 mg/d between 8 wk prepartum and calving (P ≥ 0.54), when dietary intake was the lowest of the period evaluated. However, when dietary intake was highest, between wk 6 and 16 postpartum, positive Mn and Cu balances were observed (80 and 20 mg/d, respectively, P ≤ 0.05). Cows were in positive Zn balance throughout the study except during the first 3 wk after calving during which the Zn balance was negative. CONCLUSIONS: Large adaptations occur in trace metal homeostasis in transition cows in response to changes in dietary intake. High dry matter intakes, associated with high milk production of dairy cows, combined with current Zn, Mn, and Cu supplementation practices may exceed regulatory homeostatic mechanisms resulting in potential body accumulation of Zn, Mn, and Cu.


Assuntos
Oligoelementos , Feminino , Humanos , Bovinos , Animais , Lactação/fisiologia , Cobre , Zinco , Manganês , Estudos Longitudinais , Dieta/veterinária , Leite , Período Pós-Parto , Homeostase
6.
J Dairy Res ; : 1-3, 2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36632800

RESUMO

This research communication reports the responses to supplementing dairy cattle with a hydrogenated fat-embedded calcium gluconate feed additive. The role of hindgut health in ruminant performance and wellbeing is an area of growing interest. Various prebiotic compounds have been used to promote lower gut health in various non-ruminant species. Calcium gluconate, a prebiotic compound, has previously been observed to increase milk fat yield when fed to ruminants in a form capable of resisting fermentation in the rumen, though the mechanism(s) behind this response remain unclear. The objective of this study was to compare the responses of lactating cattle to two different supplementation levels of a hydrogenated fat-embedded calcium gluconate (HFCG) product to evaluate a potential linear dose response. Forty-six lactating Holstein dairy cattle were used in a 3 × 3 replicated Latin square design with 28 d periods to evaluate a previously used dose of HFCG (approximately 16 g/d) with both a negative control and a dose of 25 g/d. Supplementation of multiparous animals with 16 g/d HFCG significantly (P < 0.05) increased milk fat yield and content relative to the negative control, and subsequently improved gross feed efficiency (P < 0.05); additionally, the presence of a potential non-linear dose response was observed for these parameters. Responses when supplemented with 25 g/d HFCG did not differ from the negative control. No production responses were observed in primiparous animals. The mode of action of HFCG, in addition to the potential differential response in primiparous animals remains unclear and warrants further investigation.

7.
J Dairy Sci ; 105(12): 9564-9580, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36270873

RESUMO

The objective of this study was to characterize total-tract nutrient digestibility, energy balance, and N balance in the critical dietary and metabolic transitions of the lactation cycle. Twelve dairy cows were housed in tiestalls from 10 wk before to 16 wk after parturition. After 2 wk of adaptation to the facility and diet, digestibility of organic matter (OM), neutral detergent fiber (NDF), starch, and N were measured, and energy and N balances determined at weekly intervals by total collection of feces, urine, and milk over 48 h. Cows were individually fed ad libitum a grass silage- and corn silage-based total mixed ration during lactation and a corn silage- and barley straw-based total mixed ration during the dry period. Effects of stage of lactation were evaluated by clustering week in 5 groups: late lactation (wk -8 to -7), dry period (wk -6 to -1), and 3 early lactation periods (wk 1 to 5, wk 6 to 10, and wk 11 to 16). In lactation, apparent total-tract digestibility of OM, NDF, and starch was lowest in the first 5 wk of lactation. From wk 2 to 16 after parturition, apparent nutrient digestibility of all nutrients increased linearly, but with a negative quadratic component for dry matter, OM, and NDF, to levels comparable to those reported in last 2 wk of the previous lactation. However, differences in digestibility across lactation stage were moderate, illustrated by the difference between OM digestibility in late lactation (last 2 wk, 74.8%) and early lactation (first 5 wk, 72.5%). Cows were in negative energy balance for the first 8 wk after calving, and in negative N balance for the first 4 wk after calving. Based on energy and N balance, we predicted that 36.5 kg of body fat and 3.5 kg of body protein were gained in the last 8 wk before calving, and that 47.5 kg of body fat and 7.6 kg of body protein were mobilized in the first weeks of lactation. These predicted changes in body mass, both the gain before calving and loss after calving, were greater by 37% and 10%, respectively, than fluctuations in measured body weight (corrected for predicted gut fill and fetus weights). At wk 1 and 2 postpartum, body N loss corresponded to 25 and 29%, respectively, of total N excretion in milk, and body energy loss corresponded to 64% and 44%, respectively, of the energy exported to milk, illustrating the important contribution of N and energy from body stores to milk production in early lactation. Metabolic N efficiency, measured as total N output (milk and body) over digestible N input (from diet and body), averaged 54.4% in the last 2 wk of lactation, increased to 65.9% 2 wk after calving, and decreased linearly as lactation advanced to 61.9% by wk 16. Short (48 h) but weekly repetition of total collection of feces and urine appears to be a suitable approach to evaluate temporal changes in nutrient digestibility, energy balance, and N balance across lactation and the dry period.


Assuntos
Lactação , Nitrogênio , Feminino , Bovinos , Animais , Nitrogênio/metabolismo , Digestão , Silagem/análise , Leite/metabolismo , Fibras na Dieta/metabolismo , Dieta/veterinária , Zea mays/metabolismo , Amido/metabolismo
8.
J Anim Sci ; 100(8)2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35652468

RESUMO

Gluconate salts have been identified as a butyrate precursor when fed to non-ruminant species and may increase the butyrate concentration in the large intestine supporting gastrointestinal health and development. The objective of this study was to evaluate the dose response of hydrogenated fat-embedded calcium gluconate (HFCG) on performance and gastrointestinal tract (GIT) development in growing lambs. Thirty-two wether lambs were used in a randomized complete block design and assigned to 1 of 4 treatments differing in the inclusion of HFCG: 0.0% (CON), 0.075% (LOW), 0.30% (MED), and 0.60% of the diet (HIGH). Lambs were allocated into individual pens and fed ad libitum with feed delivered twice daily. Feed intake was recorded daily, and body weight (BW) was assessed at the beginning and the end of the 29-d period. Blood was sampled on day 21, prior to feeding and 6 h post-feeding to evaluate changes in ß-hydroxybutyrate, glucose, and insulin concentrations. Total fecal collection was conducted during days 25 to 28 to assess apparent total tract digestibility. On day 29, lambs were slaughtered, and the entire GIT was separated by region to enable sampling of tissue and digesta. Data were analyzed to assess linear, quadratic, and cubic effects of HFCG dose. Final BW, average daily gain, and dry matter intake decreased linearly (P ≤ 0.02) with increasing HFCG. Increasing inclusion of HFCG linearly decreased (P = 0.01) the thickness of the stratum corneum in ruminal papillae but did not affect other strata (P ≥ 0.34). Omasal digesta weight linearly decreased (P = 0.01) as the concentration of HFCG increased and abomasal digesta weight was cubically affected (P = 0.03) the increasing dose of HFCG. Short-chain fatty acid concentration in the cecum was cubically affected (P < 0.01) with increasing dose of HFCG where low dose had the greatest concentration. Moreover, increasing the dietary supply of HFCG linearly increased the proportion of acetate (P = 0.04) in the cecum and linearly decreased the proportion of propionate in the digesta of both the cecum (P < 0.01) and colon (P = 0.01). Colon crypt depth was quadratically (P = 0.03) affected with the increasing dose of HFCG, where lambs fed MED had greatest crypt depth. We conclude that feeding HFCG to growing lambs did not increase butyrate concentration in the large intestine and consequently does not increase the absorptive surface area of the whole tract, the size of the GIT, or the functionality of the intestine.


Gluconate salts have been reported to be metabolized by microbes in the gastrointestinal tract to yield butyrate. Butyrate has shown potential to enhance functionality of the gastrointestinal tract by increasing the absorptive surface area, enzyme activity, and the barrier function. This study evaluated the inclusion of four levels of hydrogenated fat-embedded Ca-gluconate (HFCG; 0.0%, 0.075%, 0.30%, and 0.60% of the diet) designed to increase the production of butyrate in the large intestine. Thirty-two wether lambs were fed for 28 d, slaughtered, and eviscerated to allow complete evaluation of the gastrointestinal tract and its contents. Growth and dry matter intake decreased linearly with increasing dose of HFCG. Dose of HFCG cubically affected short-chain fatty acid concentration in the cecum with increased concentrations at the 0.075% dose. Moreover, increasing dose of HFCG linearly increased the proportion of acetate and linearly decreased the proportion of propionate in the cecum without altering the proportion of butyrate. Thus, the supplementation of HFCG did not increase butyrate concentration in the large intestine and did not enhance gastrointestinal tract function.


Assuntos
Digestão , Rúmen , Ração Animal/análise , Animais , Butiratos/metabolismo , Gluconato de Cálcio/metabolismo , Gluconato de Cálcio/farmacologia , Dieta/veterinária , Ingestão de Alimentos , Fermentação , Trato Gastrointestinal/metabolismo , Intestino Grosso/metabolismo , Masculino , Microvilosidades/metabolismo , Rúmen/metabolismo , Ovinos , Carneiro Doméstico
9.
Porcine Health Manag ; 8(1): 8, 2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35090573

RESUMO

BACKGROUND: Immune cell activation and perpetuation of inflammation have been attributed to the neurotransmitter serotonin (5-hydroxytryptamine; 5-HT). Our hypothesis was that the 5-HT system plays a role in GI health and immunity in post-weaning piglets. A disruption of the 5-HT system post-weaning with transcriptional upregulation of 5-HT receptors may be linked to increased cytokine mRNA abundance and immune system activation. METHODS: The objective of this exploratory study was to assess the relationship between 5-HT receptor expression and immune system biomarkers in piglets at 1 (n = 9) and 15 (n = 10) days post-weaning. The mRNA transcript abundance of three 5-HT receptors (5-HTR3, 5-HTR4, and 5-HTR7) measured in jejunum and colon tissues were used to determine the relationship with the immune system and jejunal morphometry at 2 timepoints post-weaning using correlations, mixed models, and multivariate analysis techniques. RESULTS: Overall, 5-HT receptor mRNA expression decreased from day 1 to day 15 post-weaning. Time × tissue interactions showed the lowest 5-HTR3 expression in the colon and lower 5-HTR7 expression in the jejunum at 15 days post-weaning. 5-HTR3 and 5-HTR4 expression were negatively associated with pro-inflammatory (IFN-É£) and anti-inflammatory (IL-10 and IL-12ß) cytokines in jejunum, and with TNF-α in the colon at 1-day post-weaning. At 15 days post-weaning, 5-HTR3 in the colon was negatively associated with pro-inflammatory (IL-1α, IL-1ß, TNF-α, IL-8, and IFN-É£) and anti-inflammatory (IL-10 and IL-12ß) cytokines. Furthermore, 5-HTR7 expressed a predominantly pro-inflammatory profile (IFN-α, IL-1α, IL-1ß, IL-8, TNF-α and IL-12α) in the jejunum at the same timepoint, whereas colonic 5-HTR7 expression was negatively correlated with IL-1α, IL-1ß, IL-10 and TGF-ß. Lastly, positive correlations were found for increased expression of 5-HTR4 receptor with villus height, 5-HTR7 receptor expression and crypt depth, and increased expression of 5-HTR3 and 5-HTR4 receptor with villus height to crypt depth ratio at 1-day post-weaning. CONCLUSIONS: The 5-HT receptor mRNA abundance was associated with the immune system and intestinal morphometry in piglets. The 5-HT receptors were highly expressed at weaning in both jejunum and colon tissues relative to 15 days post-weaning. Although a clear relationship between immune system and 5-HTR expression is observed, particularly at day 15, a cause-consequence cannot be proven with current data. Further research is warranted to elucidate the effects of 5-HT on gastrointestinal inflammation during the weaning process in piglets, which could be the basis for new interventions to ease weaning stress.

10.
J Anim Sci ; 99(11)2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34679178

RESUMO

This study examined the effect of a water acidifier containing free and buffered short-chain fatty acids (SCFA-WA) on growth performance and microbiota of weaned piglets. In total, 192 male piglets, approximately 4 wk of age, were allocated to 24 pens (12 per treatment) with 8 piglets per pen. The piglets received either regular drinking water (negative control) or drinking water with the acidifier supplied at 2 L/1,000 L. Body weight and feed intake were measured weekly on pen level. During the first 2 wk, daily visual assessment and scoring of the feces was conducted. Fecal samples of three piglets per pen were collected on days 14 and 42 for high-throughput sequencing analysis of the microbiota. Piglets offered SCFA-WA had significantly improved feed efficiency in the third week (P = 0.025) and over the whole study period (days 0 to 42, P = 0.042) compared with piglets in the negative control group, with a strong tendency observed during the first feeding phase (days 0 to 21, P = 0.055). Furthermore, the water acidifier group had a higher water intake than piglets provided with control water during the second feeding phase (days 21 to 42, P = 0.028) and over the whole study period (days 0 to 42, P = 0.043). There was no significant difference in body weight, average daily gain, or average daily feed intake (days 0 to 21, 21 to 42, 0 to 42). Furthermore, there was no overall significant difference in fecal scoring between the treatments. In terms of the fecal microbiota response, piglets offered the water acidifier showed a significantly higher relative abundance (RA) of genus Clostridium sensu stricto 1 and a lower RA of genus Streptococcus compared to the control. Furthermore, the redundancy analysis showed a positive association between improved feed efficiency and daily weight gain and RA of Butyricicoccus and Faecalibacterium. In conclusion, consumption of the water acidifier containing free and buffered SCFA modulated the microbiota and improved feed efficiency in piglets.


Assuntos
Ração Animal , Microbiota , Ração Animal/análise , Animais , Ácidos Graxos Voláteis , Fezes , Masculino , Suínos , Água , Desmame
11.
Animals (Basel) ; 10(10)2020 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-33036177

RESUMO

An adequate gastrointestinal barrier function is essential to preserve animal health and well-being. Suboptimal gut health results in the translocation of contents from the gastrointestinal lumen across the epithelium, inducing local and systemic inflammatory responses. Inflammation is characterized by high energetic and nutrient requirements, which diverts resources away from production. Further, barrier function defects and inflammation have been both associated with several metabolic diseases in dairy cattle and liver abscesses in feedlots. The gastrointestinal tract is sensitive to several factors intrinsic to the productive cycles of dairy and beef cattle. Among them, high grain diets, commonly fed to support lactation and growth, are potentially detrimental for rumen health due to their increased fermentability, representing the main risk factor for the development of acidosis. Furthermore, the increase in dietary starch associated with such rations frequently results in an increase in the bypass fraction reaching distal sections of the intestine. The effects of high grain diets in the hindgut are comparable to those in the rumen and, thus, hindgut acidosis likely plays a role in grain overload syndrome. However, the relative contribution of the hindgut to this syndrome remains unknown. Nutritional strategies designed to support hindgut health might represent an opportunity to sustain health and performance in bovines.

12.
J Anim Physiol Anim Nutr (Berl) ; 104(1): 64-75, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31674078

RESUMO

The ruminant is able to transform plant fibres and non-protein nitrogen (NPN) into edible foods for human consumption. In an effort towards improving our understanding of this process, we sought to challenge convention and examine how the source, amount and site of NPN delivery in the gastrointestinal tract of the ruminant may affect fibre digestibility, rumen stability and N metabolism. In the first study presented here, we used four ruminally cannulated non-lactating heifers in a Latin square design to infuse 59 g/days of N in the form of ammonia (A) or urea (U) into either the rumen (R) or the abomasum (A). We found that intake was higher (p = .03) for animals receiving supplementary NPN as urea compared with ammonia. In addition, abomasally infused urea (UA) improved fibre fermentation by 9.4% (p = .05) and decreased ruminal pH fluctuations (lower slope in the cumulative pH parameters, p = .04) when compared with the same amount of urea infused ruminally (UR). In a second study, using the same group of heifers, we infused 50 or 150 g/day of urea into the rumen (UR50 and UR150) or 150 g of urea in the abomasum (UA150) or 50 g in the rumen and 100 g in the abomasum (URA150). Fibre digestion was improved by 4% (p = .02) when the same dose of urea was infused into the abomasum compared with the rumen, while estimated microbial protein production and N efficiency were not different between a low rumen dose and high post-ruminal dose of urea. Collectively, these studies provide insight into the viability of post-ruminal NPN supplementation as a strategy to improve fibre digestion and NPN inclusion in the ruminant diet.


Assuntos
Bovinos/fisiologia , Fibras na Dieta/metabolismo , Digestão/efeitos dos fármacos , Nitrogênio/farmacologia , Ração Animal/análise , Animais , Dieta/veterinária , Feminino , Concentração de Íons de Hidrogênio , Nitrogênio/administração & dosagem , Rúmen
13.
J Dairy Sci ; 102(7): 6056-6064, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31079910

RESUMO

Hypocalcemia is a common postpartum condition in dairy cows, which negatively affects health and production. Intravenous Ca infusions are commonly included in calving protocols to prevent or mitigate the effect of hypocalcemia in multiparous cows. Thus, we sought to contrast the effect of intravenous Ca infusion against voluntary oral Ca intake on Ca metabolism. Serum total Ca (tCa) and whole-blood ionized Ca (iCa) were monitored in 24 multiparous Holstein cows after parturition. Precalving diets were formulated with a positive dietary cation-anion difference of 172 mEq/kg of DM and contained 4.1 g of Ca/kg of DM. At parturition, cows were blocked by calving sequence and calcemic status as either normocalcemic (cutoff threshold of iCa ≥1.10 mmol/L) or hypocalcemic (cutoff threshold of iCa <1.10 mmol/L). Cows in each block were randomly assigned to 1 of 2 treatments: either an oral source of Ca (Ca-Oral; n = 12) or an intravenous source of Ca (Ca-IV; n = 12). Cows in the Ca-Oral group were offered a 20-L commercial Ca suspension (48 g of Ca) for voluntary consumption. The supplement contained Ca carbonate, Ca formate, Ca propionate, and other minerals and vitamins (Farm-O-San Reviva, Trouw Nutrition, Amersfoort, the Netherlands). Cows in the Ca-IV group received a 450-mL intravenous Ca solution (13 g of Ca) that contained 298 mg/mL of Ca gluconate, 33 mg/mL of magnesium chloride, and 82 mg/mL of boric acid (AmosCAL, Kommer-Biopharm BV, Heiloo, the Netherlands). Both treatments were initiated within 25 ± 10 min after calving. The oral Ca suspension was offered to cows in a 25-L bucket and was available for 10 min. All cows in the Ca-Oral group voluntarily consumed the entire 20 L of the Ca suspension within 5 min. Blood samples for Ca analyses were collected at 0 (before treatment initiation), 1, 3, 10, and 18 h relative to treatment, and at 0700 and 1900 h for the next 2 consecutive days, to represent the 24-, 36-, 48-, and 60-h sampling time points. In Ca-IV cows, both iCa and tCa concentrations peaked at 1 h (1.54 mmol/L for iCa and 2.85 mmol/L for tCa) and declined to a nadir at 24 h following treatment initiation (0.94 mmol/L for iCa and 1.74 mmol/L for tCa). Although whole-blood iCa and serum tCa were higher at 1 and 3 h in Ca-IV cows, concentrations of iCa were greater for Ca-Oral cows at 18, 24, and 36 h and for tCa at 24 and 36 h. Our data indicate that intravenous Ca infusion immediately induced a state of hypercalcemia followed by lower whole-blood iCa and serum tCa concentrations 24 h later compared with oral Ca.


Assuntos
Cálcio/administração & dosagem , Doenças dos Bovinos/prevenção & controle , Homeostase/efeitos dos fármacos , Hipocalcemia/veterinária , Administração Intravenosa/veterinária , Animais , Cálcio/sangue , Cálcio da Dieta/administração & dosagem , Bovinos , Doenças dos Bovinos/sangue , Dieta/veterinária , Feminino , Hipocalcemia/prevenção & controle , Lactação , Países Baixos , Parto , Gravidez , Distribuição Aleatória
14.
J Dairy Sci ; 102(2): 1274-1280, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30591339

RESUMO

Gluconic acid is a carboxylic acid naturally occurring in plants and honey. In nonruminant animals, gluconic acid has been shown to increase gastrointestinal butyrate concentrations and improve growth performance, but a ruminant application remains undescribed. This experiment examined the effects of postruminal calcium gluconate (CaG) on milk production, fecal volatile fatty acid concentrations, and plasma metabolite concentrations in lactating dairy cows. Six rumen cannulated multiparous Holstein cows (60 ± 6 d in milk) were randomly assigned to 6 treatment sequences within a 6 × 6 Latin square design in which each experimental period consisted of 5 d of continuous postruminal infusion followed by a 2 d wash-out period. Test treatments included a negative control (CON; 0.90% NaCl wt/vol), positive control (Na-butyrate, 135 g/d), and 4 doses of CaG (44, 93, 140, and 187 g/d). Cows received a total mixed ration (31% corn silage, 28% alfalfa silage, 5% hay, 36% concentrate) with dry matter intake fixed (25.3 ± 1.7 kg/d) throughout the experiment. On d 5 of each infusion period, samples of milk, feces, and blood were collected from each animal. Calcium gluconate treatments increased milk fat concentration, and a tendency was observed for increased milk fat yield and energy-corrected milk yield above levels achieved by CON, with maximal treatment responses of 4.43% (CON 3.81%), 2.089 kg/d (CON 1.760 kg/d), and 51.8 kg/d (CON 47.1 kg/d), respectively. Concentrations of iso-butyric acid in feces were greater in cows infused with CaG (13.3 µmol/g) treatments compared with CON (9.7 µmol/g). Arterial concentrations of glucose and nonesterified fatty acids were lower (glucose: CaG 2.98 mmol/L, CON 3.29 mmol/L and nonesterified fatty acids: CaG 0.130 mmol/L vs. 0.148 mmol/L) and ß-hydroxybutyrate higher (CaG 1.703 vs. CON 0.812) in cows infused with CaG than CON. Together, these results suggest that postruminal infusion of CaG may alter metabolic mechanisms to support a milk fat production response.


Assuntos
Gluconato de Cálcio/metabolismo , Bovinos/fisiologia , Ácidos Graxos Voláteis/química , Fezes/química , Leite/metabolismo , Rúmen/metabolismo , Ácido 3-Hidroxibutírico/análise , Ácido 3-Hidroxibutírico/metabolismo , Animais , Ácido Butírico/metabolismo , Dieta/veterinária , Ácidos Graxos Voláteis/metabolismo , Feminino , Lactação/fisiologia , Medicago sativa/metabolismo , Leite/química , Silagem/análise , Zea mays/metabolismo
15.
J Dairy Sci ; 101(6): 5655-5666, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29605320

RESUMO

Milk protein yield responses to changes in the profile of essential amino acids absorbed by the gastrointestinal tract or circulating in blood plasma do not follow the classic limiting amino acid response, in part because of an ability of the mammary glands to modify their blood flow rate and net clearance of amino acids out of plasma. The hypothesis that mammary blood flow is locally regulated to maintain ATP balance accounts for observed changes in flow due to postruminal glucose, insulin, and essential amino acid (EAA) infusions. An additional hypothesis that net mammary uptakes of metabolites from blood are affected by perturbations in their respective arterial concentrations and the rate of mammary blood flow also appears to hold for the energy metabolites glucose, acetate, ß-hydroxybutyrate, and fatty acids. However, net EAA uptakes by the mammary glands are poorly predicted by models considering arterial concentrations and blood flow rates only. Evidence points to intramammary protein synthesis and secretion as the determinant of net EAA uptake. The intracellular signaling network anchored by the mechanistic target of rapamycin complex 1 stands as an excellent candidate to explain nutritional effects on milk protein synthesis because it integrates information on physiological and nutritional state to affect protein synthesis and cell metabolism, growth, proliferation, and differentiation in many cell types. In mammary cells in vitro and in vivo, the mechanistic target of rapamycin complex 1, integrated stress response, and glycogen synthase kinase-3 networks that contribute to regulation of initiation of mRNA translation are responsive to acute changes in nutrient supply and EAA profile. However, after several days of postruminal infusion of balanced and imbalanced EAA profiles, these signaling networks do not appear to continue to account for changes in milk protein yields. Gene expression evidence suggests that regulation of components of the unfolded protein response that control biogenesis of the endoplasmic reticulum and differentiation of a secretory phenotype may contribute to effects of nutrition on milk protein yield. Connections between early signaling events and their long-term consequences should be sought.


Assuntos
Aminoácidos/metabolismo , Glândulas Mamárias Animais/metabolismo , Proteínas do Leite/metabolismo , Aminoácidos Essenciais , Animais , Feminino , Lactação , Leite
16.
J Dairy Sci ; 101(5): 4542-4553, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29477518

RESUMO

The objectives of this study were to investigate the effects of branched-chain AA (BCAA) supplementation when glucose is infused postruminally into lactating dairy cows consuming a diet low in crude protein (CP) and to test the hypothesis that low BCAA concentrations are responsible for the poor stimulation of milk protein yield by glucose. Twelve early-lactation Holstein cows were randomly assigned to 15% and 12% CP diets in a switchback design of 6-wk periods. Cows consuming the 12% CP diet received 96-h continuous jugular infusions of saline and 1 kg/d of glucose with 0, 75, or 150 g/d of BCAA in a Latin square sequence of treatments. Compared with saline, glucose infusion did not affect dry matter intake but increased milk yield by 2.2 kg/d and milk protein and lactose yields by 63 and 151 g/d, respectively. Mammary plasma flow increased 36% during glucose infusion compared with saline infusion, possibly because of a 31% decrease in total acetate plus ß-hydroxybutyrate concentrations. Circulating concentrations of total essential AA and BCAA decreased 19 and 31%, respectively, during infusion of glucose, yet net mammary uptakes of AA remained unchanged compared with saline infusion. The addition of 75 and 150 g/d of BCAA to glucose infusions increased arterial concentrations of BCAA to 106 and 149%, respectively, of the concentrations in saline-infused cows, but caused a decrease in concentrations of non-branched-chain essential AA in plasma, as well as their mammary uptakes and milk protein yields. Plasma urea concentration was not affected by BCAA infusion, indicating no change in catabolism of AA. The lack of mammary and catabolic effects leads us to suggest that BCAA exerted their effects on plasma concentrations of the other essential AA by stimulating utilization in skeletal muscle for protein accretion. Results indicate that the glucose effect on milk protein yield was not limited by low BCAA concentrations, and that a stimulation of extra-mammary use of non-branched-chain essential amino acids by BCAA led to a decrease in milk protein yield.


Assuntos
Aminoácidos de Cadeia Ramificada/sangue , Aminoácidos Essenciais/sangue , Bovinos/metabolismo , Glucose/administração & dosagem , Lactação/fisiologia , Ácido 3-Hidroxibutírico/metabolismo , Aminoácidos/metabolismo , Aminoácidos de Cadeia Ramificada/administração & dosagem , Animais , Dieta/veterinária , Proteínas na Dieta/administração & dosagem , Feminino , Lactose/análise , Glândulas Mamárias Animais/metabolismo , Leite/química , Proteínas do Leite/análise , Músculo Esquelético/metabolismo , Ureia/análise
17.
J Vis Exp ; (142)2018 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-30614491

RESUMO

Bovine mammary gland biopsies allow researchers to collect tissue samples to study cell biology including gene expression, histological analysis, signaling pathways, and protein translation. This article describes two techniques for biopsy of the bovine mammary gland (MG). Three healthy Holstein dairy cows were the subjects. Before biopsies, cows were milked and subsequently restrained in a cattle chute. An analgesic (flunixin meglumine, 1.1 to 2.2 mg/kg of body weight) was administered via jugular intravenous [IV] injection 15-20 min prior to biopsy. For standing sedation, xylazine hydrochloride (0.01-0.05 mg/kg of body weight) was injected via the coccygeal vessels 5-10 min before the procedure. Once adequately sedated, the biopsy site was aseptically prepared and locally anaesthetized with 6 mL of 2% lidocaine hydrochloride via subcutaneous injection. Using aseptic technique, a 2 to 3 cm vertical incision was made using a number 10 scalpel. Core and needle biopsy tools were used. The core biopsy tool was attached to a cordless drill and inserted into the MG tissue through the incision using a clock-wise drill action. The needle biopsy tool was manually inserted into the incision site. Immediately after the procedure, an assistant applied pressure on the incision site for 20 to 25 min using a sterile towel to achieve hemostasis. Stainless steel surgical staples were used to oppose the skin incision. The staples were removed 10 days post-procedure. The main advantages of core and needle biopsies is that both approaches are minimally invasive procedures that can be safely performed in healthy cows. Milk yield following the biopsy was unaffected. These procedures require a short recovery time and result in fewer risks of complications. Specific limitations may include bleeding after the biopsy and infection on the biopsy site. Applications of these techniques include tissue collection for clinical diagnosis and research purposes, such as primary cell culture.


Assuntos
Biópsia/veterinária , Glândulas Mamárias Animais/cirurgia , Animais , Biópsia/métodos , Bovinos , Feminino , Glândulas Mamárias Animais/patologia
18.
J Dairy Sci ; 98(11): 7846-55, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26342977

RESUMO

Deficiencies and imbalances of specific group II essential amino acids (EAA) were created in lactating cows by an infusion subtraction protocol to explore effects on milk production and abundance and phosphorylation state of regulators of mRNA translation in the mammary glands. Five lactating cows on a diet of 11.2% crude protein were infused abomasally for 5d with saline, 563 g/d of a complete EAA mix, or EAA mixes without the branched-chain amino acids (BCAA), Leu, or Lys in a 5 × 5 Latin square design. Milk protein yield was stimulated by EAA infusion and returned to saline levels upon subtraction of BCAA, Leu, or Lys. Mammary abundance of phosphorylated S6K1 was measured as an indicator of mammalian target of rapamycin complex 1 (mTORC1) activity and was found not to be affected by the complete EAA mix but was increased by the mixture lacking Lys. Total S6K1 abundances in mammary tissue were elevated by complete and BCAA-lacking infusions. All of the EAA treatments except the one lacking BCAA upregulated mammary eIF2Bε and eIF2α abundances, which is stimulatory to global mRNA translation. Phosphorylation state of eIF2Bε tended to decrease when complete or Lys-lacking EAA mixtures were infused. Phosphorylation state of eIF2α was not affected by treatment. We detected a correlation of 0.62 between phosphorylation state of S6K1 and total eIF2Bε abundance, and a correlation of 0.58 between phosphorylation state of S6K1 and total eIF2α abundance, suggesting that mTORC1 activation may have upregulated eIF2Bε and eIF2α expression. Despite maintenance of mammary eIF2Bε and eIF2α abundances during Leu and Lys deficiencies, milk protein yield declined, suggesting that other factors are responsible for mediating effects of Lys and Leu. A deficiency of all 3 BCAA may impair milk protein yield through deactivation of mTORC1-mediated upregulation of eIF2Bε and eIF2α abundances.


Assuntos
Aminoácidos de Cadeia Ramificada/deficiência , Bovinos/metabolismo , Regulação da Expressão Gênica/fisiologia , Lisina/deficiência , Glândulas Mamárias Animais/metabolismo , Biossíntese de Proteínas/genética , Abomaso/metabolismo , Aminoácidos Essenciais/administração & dosagem , Animais , Dieta/veterinária , Proteínas na Dieta/administração & dosagem , Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 2B em Eucariotos/genética , Feminino , Lactação/fisiologia , Glândulas Mamárias Animais/química , Alvo Mecanístico do Complexo 1 de Rapamicina , Leite/química , Proteínas do Leite/análise , Proteínas do Leite/biossíntese , Proteínas do Leite/genética , Complexos Multiproteicos/metabolismo , Fosforilação , Proteínas Quinases S6 Ribossômicas 70-kDa/análise , Serina-Treonina Quinases TOR/metabolismo
19.
Artigo em Inglês | MEDLINE | ID: mdl-22748507

RESUMO

Ruminants absorb little glucose and rely on hepatic gluconeogenesis and ketogenesis in the fed state to convert short-chain fatty acids produced during digestion into glucose and ketone bodies, respectively. In contrast to the non-ruminant response, fluxes through gluconeogenic and ketogenic pathways decrease during food restriction. Transcriptional regulation responsible for these unique food restriction responses has not been established. To determine the hepatic transcriptional response of ruminants to an acute drop in dietary nutrient supply, 102 yearling heifers were assigned to either ad libitum feeding or 24 h of food withdrawal in a randomized block design. Liver biopsies were obtained for microarray and quantitative real-time PCR analyses of gene expression. Plasma concentrations of non-esterified fatty acids were higher in food restricted heifers, while levels of ß-hydroxybutyrate, triacylglycerol, and glucose were decreased. Despite a decline in substrate supply and a lower hepatic production of glucose, expression of the key gluconeogenic enzymes pyruvate carboxylase, phosphoenolpyruvate carboxykinase and fructose-1,6-bisphosphatase was upregulated as in non-ruminants. Downregulation of cholesterolgenic genes and upregulation of fatty acid oxidative genes were consistent with SREBP-2 and PPARα control, respectively. Ketogenesis from short-chain fatty acids was downregulated, contrary to the non-ruminant response to food restriction. Short-chain fatty acids may exert transcriptional control in the ruminant liver similar to that demonstrated in the large intestine of non-ruminants.


Assuntos
Restrição Calórica , Perfilação da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Corpos Cetônicos/biossíntese , Corpos Cetônicos/genética , Fígado/enzimologia , Ruminantes/genética , Ácido 3-Hidroxibutírico/sangue , Animais , Bovinos , Ácidos Graxos não Esterificados/sangue , Humanos , Redes e Vias Metabólicas/genética , Metaboloma/genética , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Reprodutibilidade dos Testes , Ruminantes/sangue , Transcrição Gênica , Triglicerídeos/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...